Preliminary communication

NMR¹ J(Sn-Sn) COUPLING CONSTANTS IN HEXAORGANODITINS

TERENCE N. MITCHELL

Lehrstuhl für Organische Chemie, Universität Dortmund (BRD) (Received February 12th, 1974)

Summary

Direct one-bond tin—tin coupling constants have been measured in a series of hexaorganoditins; the magnitude of the coupling shows a marked dependence on the effective nuclear charge on tin.

During an investigation of the ¹³C-NMR spectra of organotin compounds [1], three hexaorganoditins were studied. While the spectra showed a large variation in ²J(C-Sn-Sn), ¹J(C-Sn) was almost invariant. This Preliminary communication describes the results of ¹¹⁹Sn-NMR investigations made on a series of ditins. The data obtained are given in Table 1. Previously only Me₆Sn₂ had been studied in detail [2] and for this ¹ $J(1^{19}Sn-1^{17}Sn)$ was found to be +4264 Hz. The value found in the present work was 4211 ± 6 Hz.^{*}

Table 1 shows that very large variations are observed in ${}^{1}J(Sn-Sn)$ when different alkyl groups are bonded to tin. The trends in compounds I to X can be rationalised in terms of the number of protons bound to the carbon atoms α to tin. Increased alkyl substitution at these carbon atoms causes a rapid decrease in ${}^{1}J(Sn-Sn)$. The reason is apparently that the (+I) inductive effect or electron-releasing ability of the alkyl groups bound to tin is increased, and therefore the effective nuclear charge on tin lowered: ${}^{1}J(Sn-Sn)$ shows a linear correlation with the sum of the Taft constants of the six alkyl groups. Similar, though smaller, changes have been observed for ${}^{1}J({}^{119}Sn-{}^{77}Se)$ in organotin selenides [3] and for ${}^{1}J({}^{119}Sn-H)$ in organotin hydrides. In the latter case, no convincing explanation has previously been offered for the variations [4].

Compounds XI to XIII show a similar trend to that already discussed for hexaalkylditins, a decrease in ${}^{1}J(Sn-Sn)$ occurring on alkyl substitution

^{*}The spectra were recorded in the PFT-mode with proton noise decoupling using a Bruker HFX-10 spectrometer, operating at 33.546 MHz and 2.1T and coupled to a Nicolet Series 1080 computer; they normally consisted of 4K data points corresponding to a sweep width of 12500 Hz, giving a digital resolution of ca. 3 Hz.

Compound	R ₃ Sn-SnR' ₃		δ(R ₃ Sn) (ppm) ^a		δ(R '₃Sn)	¹ J(¹¹⁹ Sn— ¹¹⁷ Sn) (Hz)
	R	R				
I	Me	Me		-108.7		4211
II	Me	Et	-108,1		61.8	3342
111	Me	s-Bu	105.3		- 45.3	2686
IV	Me	C, H.,	103.8		- 78.3	2716
v	Et	Et		- 59.9		2583
VI	Et	n-Bu	- 65.7		- 79.7	2570
VII	i-Pr	i-Pr		- 29.1		1155
VIII	n-Bu	n-Bu		- 83.2		2625
IX	i-Bu	$C_{6}H_{11}$	- 93.2		- 85.2	2422
x	Ь	<i>b</i> -		- 21.5		730
XI	Me	Ph	- 91.5		150.6	4075
XII	Et	Ph	- 48.7		-140.4	3014
XIII	i-Bu	Ph	- 86.8		-146.9	3058

 a_b (internal Me_a Sn) = 0; negative sign indicates high-field shift. $C_o D_o$ was used as internal lock, and solids were dissolved in CHCl₃. $b R_3 = R'_3 = i - Pr_2$, t-Bu.

of the methyl groups in Me₃SnSnPh₃. No correlation of ${}^{1}J(Sn-Sn)$ with Taft constants is possible in this case, however, presumably because interaction between the aromatic π -system and empty tin d orbitals causes changes in hybridisation or effective nuclear charge.

These results indicate that the effective nuclear charge on tin may well play a more important role in determining the size of coupling constants in organotin compounds than has previously been realised. The relation between coupling constant and s-character, first proposed in 1961 [5] and since modified [6] was criticized as early as 1965 [7] on the grounds that it ignores the effect of effective nuclear charge. Though rehybridisation at the tin atom must apparently be postulated in order to explain the values of ${}^{1}J(Sn-C)$ and $^{2}J(Sn-H)$ in 5- and 6-coordinated organotin compounds, changes in effective nuclear charge may be mainly responsible for changes in these coupling constants in 4-coordinated compounds (and indeed for changes in coupling constants in organic compounds of metals in general). We intend to use compounds of the type R_3 Sn-MR₃ (M = C, Si, Pb) as model compounds to study the effect of changes in R on ${}^{1}J(Sn-M)$ and ${}^{1}J(Sn-C_{alkyl})$.

The PFT technique also lends itself readily to the study of other tin--tin coupling constants $n+1J(Sn-X_n-Sn)$, where X is either tin or a "heteroatom" e.g. C, O, S. It has been found, for example, that in Et₃SnSn-i-Bu₂SnEt₃ $^{2}J(\text{Sn-Sn})$ is 430 Hz, in Et₃Sn(CH₂)₂SnEt₃ $^{3}J(\text{Sn-Sn})$ is 879 Hz, and in $(ClBu_2 Sn)_2 O^2 J(Sn - O - Sn)$ is 72 Hz.

References

- 1 T.N. Mitchell, J. Organometal. Chem., 59 (1973) 189.
- 2 W. McFarlane, J. Chem. Soc. (A), (1968) 1630.

a construction of the second second

- J.D. Kennedy and W. McFarlane, J. Chem. Soc., Dalton Trans., (1973) 2134.
 E.J. Kupchik in A.K. Sawyer (Ed.), Organotin Compounds, Dekker, New York, 1971, Vol. I, p. 13.

الحالية المحتا بتنابستيني

- 5 J.R. Holmes and H.D. Kaesz, J. Amer. Chem. Soc., 83 (1961) 3903.
- 6 e.g. E.V. van den Berghe and G.P. van der Kelen, J. Organometal. Chem., 11 (1968) 479.
- 7 D.M. Grant and W.M. Litchman, J. Amer. Chem. Soc., 87 (1965) 3994.

TABLE 1