Preliminary communication

NMR ' J(Sn-Sn) COUPLING CONSTANTS IN HEXAORGANODITINS

TERENCE N. MITCHELL Lehrstuhl für Organische Chemie, Universität Dortmund (BRD) (Received February lZth, **1974)**

summary

Direct one-bond tin-tin coupling constants have been measured in a series of hexaorganoditins; the magnitude of the coupling shows a marked dependence on the effective nuclear charge on tin.

During an investigation of the 13C-NMR spectra of organotin com**pounds [l], three hexaorganoditins were studied. While the spectra showed** a large variation in ${}^{2}J(C-Sn-Sn)$, ${}^{1}J(C-Sn)$ was almost invariant. This Preliminary communication describes the results of 119Sn-NMR investigations made on a series of ditins. The data obtained are given in Table 1. Previously only $Me_6 Sn_2$ had been studied in detail [2] and for this $1J(^{119}\text{Sn}^{-117}\text{Sn})$ was found to be +4264 Hz. The value found in the present work was 4211 ± 6 Hz.*

Table 1 shows that very large variations are observed in $^1 J(\text{Sn}-\text{Sn})$ when different alkyl groups are bonded to tin. The trends in compounds I to X can be rationalised in terms of the number of protons bound to the carbon atoms α to tin. Increased alkyl substitution at these carbon atoms causes a rapid decrease in ${}^{1}J(Sn-Sn)$. The reason is apparently that the $({}^{+}I)$ inductive effect or electron-releasing ability of the alkyl groups bound to tin is increased, and therefore the effective nuclear charge on tin lowered: ${}^{1}J(Sn-Sn)$ shows a linear correlation with the sum of the Taft constants of the six alkyl groups. Similar, though smaller, changes have been observed for ${}^{1}J({}^{119}Sn-{}^{77}Se)$ in organotin selenides [3] and for ${}^{1}J({}^{119}Sn-H)$ in organotin hydrides. In the latter case, no convincing explanation has previously been offered for the variations [4].

Compounds XI to XIII show a similar trend to that already discussed for hexaalkylditins, a decrease in $^1 J(\text{Sn-Sn})$ occurring on alkyl substitution

^{*}The **SPCCtEl Were recorded in the PFT-mode with proton noise decoupling using a Bmker** *HFX-10* **spectrometer, operating at 33.546 MHz and 2.1T and coupled to a Nicolet Series 1080** computer; they normally consisted of 4K data points corresponding to a sweep width of *l%oo Hz.* **giving a digital resolution of ca. 3 Hz.**

CHEMICAL SHIETS AND COUPLING CONSTANTS IN HEY AODGANODITINS

 a_{S} (internal Me, Sn) = 0; negative sign indicates high-field shift. $C_{\sigma} D_{\sigma}$ was used as internal lock, and solids were dissolved in CHCl₃. $b \overline{R}_3 = R'_{3} = i Pr_2$, t-Bu.

of the methyl groups in Me_3 SnSnPh₃. No correlation of $^1J(Sn-Sn)$ with Taft constants is possible in this case, however, presumably because interaction between the aromatic π -system and empty tin d orbitals causes changes in hybridisation or effective nuclear charge.

These results indicate that the effective nuclear charge on tin may well play a more important role in determining the size of coupling constants in organotin compounds than has previously been realised. The relation between coupling constant and s-character, first proposed in 1961 [5] and since modified $[6]$ was criticized as early as 1965 $[7]$ on the grounds that it ignores the effect of effective nuclear charge. Though rehybridisation at the tin atom must apparently be postulated in order to explain the values of $^1 J(Sn-C)$ and $^{2}J(Sn-H)$ in 5- and 6-coordinated organotin compounds, changes in effective nuclear charge may be mainly responsible for changes in these coupling constants in 4-coordinated compounds (and indeed for changes in coupling constants in organic compounds of metals in general). We intend to use compounds of the type R_3 Sn- MR_3 (M = C, Si, Pb) as model compounds to study the effect of changes in R on $^{1}J(Sn-M)$ and $^{1}J(Sn-C_{\text{alkyl}})$.

The PFT technique also lends itself readily to the study of other tin-tin coupling constants $n+1}J(Sn-X_n-Sn)$, where X is either tin or a "heteroatom" e.g. C, O, S. It has been found, for example, that in $Et_3SnSn-i-Bu_2SnEt_3$ ² $J(Sn-Sn)$ is 430 Hz, in Et₃Sn(CH₂)₂SnEt₃³ $J(Sn-Sn)$ is 879 Hz, and in $(ClBu₂Sn)$, O $^2J(Sn-O-Sn)$ is 72 Hz.

References

1 T.N. Mitchell, J. Organometal. Chem., 59 (1973) 189.

المنابع المنابع المنابع المنابع المنابع وليهم المنابع المنابع المنابع المستقل والمنابع المنابع والمنابع

- 2 W. McFarlane, J. Chem. Soc. (A), (1968) 1630.
- 3 J.D. Kennedy and W. McFarlane, J. Chem. Soc., Dalton Trans., (1973) 2134. 4 E.J. Kupchik in A.K. Sawyer (Ed.), Organotin Compounds, Dekker, New York, 1971, Vol. I, p. 13.

والمتحام والمتعاون والمتعاونة والمتعاون والمتوازن

والموارد والمتار

- 5 J.R. Holmes and H.D. Kaesz, J. Amer. Chem. Soc., 83 (1961) 3903.
- 6 e.g. E.V. van den Berghe and G.P. van der Kelen, J. Organometal. Chem., 11 (1968) 479.
- 7 D.M. Grant and W.M. Litchman, J. Amer. Chem. Soc., 87 (1965) 3994.
-

TABLE 1